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SUMMARY

As glycosyltransferases found in nature often show
distinct substrate specificity, glycosyltransferase
engineering is an important research field. In this
work, we were able to introduce an activity into a gly-
cosyltransferase involved in natural product (lando-
mycin E) biosynthesis. This was achieved by recog-
nizing hot spot amino acids in glycosyltransferases
which are strongly involved in determining substrate
specificity.

INTRODUCTION

The pharmaceutical activity of many natural products, among

them valuable antibiotics and anticancer therapeutics, depends

on regio- and stereospecifically attached sugar moieties

(Newman et al., 2003; Luzhetskyy et al., 2008). The attachment

of these sugars is catalyzed by glycosyltransferases (GTs). The

acceptor substrates of GTs vary widely. The donor substrate is

almost always an activated sugar, with the most common

activated species being NDP sugars (Méndez et al., 2008; Salas

and Méndez, 2007). GTs display a high level of sequence diver-

sity (Liang and Qiao, 2007) but also great structural similarity.

More than 16,000 GT sequences have been described in the

databases. They have been classified into 91 families by amino

acid sequence similarities. GTs are all globular proteins falling

into two structural superfamilies termed GT-A and GT-B which

each have an N-terminal and a C-terminal domain (Breton

et al., 2006). The enzymes of the GT-A fold have two dissimilar

domains. The N-terminal domain consisting of several b strands

that are each flanked by a helices (Rossmann folds) recognizes

the sugar nucleotide donor. The C-terminal domain, which

consists largely of mixed b sheets, contains the acceptor-

binding site. Enzymes of the GT-B fold contain two similar

Rossmann-like folds. The N-terminal domain provides the

acceptor-binding site, whereas the C-terminal domain is respon-

sible for binding the sugar donor. In both types of fold, domains

are connected by a linker region and the active site is located

between the two domains.

Most GTs involved in natural product biosynthesis belong to

the GT-B family. As these GTs are often involved in late biosyn-

thetic steps, they are ideal candidates for biotech approaches to

generate novel unnatural products. The substrate specificity of

GTs provides a critical issue in natural product diversification,

and scientists have started recently to broaden the specificity

by genetic engineering.
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One of the first experiments on the engineering of natural

product GTs was performed with UrdGT1b and UrdGT1c,

both involved in urdamycin biosynthesis. The enzymes show

different specificities for both nucleotide sugar and acceptor

substrates, but share a surprisingly high number (91%) of

identical amino acids. A region of 31 amino acids within the

N-terminal part of UrdGT1b and UrdGT1c differing in 18 posi-

tions was identified to control the substrate specificity of both

enzymes. It was possible to alter selectivity for both the donor

and the acceptor by mutating this region. Finally, a novel

compound carrying an unusual branched saccharide chain

was generated (Hoffmeister et al., 2001, 2002). This was indeed

one of the first examples describing the generation of a GT with

novel aglycon specificity. Further successful examples of GT

engineering have been described, most of them by the group

of Prof. Dr. J. Thorson. This group worked recently on the GT

OleD involved in oleandomycin glycosylation. One mutant of

OleD showed improved sugar donor specificity and another

mutant showed 200- to 300-fold improved activity toward

novobiocic acid (Williams and Thorson, 2008; Williams et al.,

2007, 2008).

Model systems used in this study are GTs from different

strains involved in the biosynthesis of landomycins, an angucy-

cline type of natural product. Landomycin A containing a long

oligosaccharide chain with four D-olivose and two L-rhodinose

moieties is produced by Streptomyces cyanogenus S136, and

landomycin E with two D-olivose and one L-rhodinose moieties

is produced by S. globisporus 1912 (Figure 1). Detailed studies

on the biosynthesis of the landomycin A hexasaccharide side

chain revealed that four glycosyltransferases are responsible

for its formation (Luzhetskyy et al., 2005). A special highlight of

this study is the GT LanGT1 (D-olivosyltransferase) catalyzing

the attachment of the second and the fifth sugars during lando-

mycin A biosynthesis (iterative acting GT). In S. globisporus,

LndGT1 catalyzes the attachment of the second sugar during

landomycin E biosynthesis (Ostash et al., 2004). Recently,

a lanGT1 knockout mutant (S. cyanogenus S136 D lanGT1)

was created by introducing a 900 bp deletion into the gene

(A. Erb, C.K., A.L., and A.B., unpublished data). Whereas

S. cyanogenus S136 produced landomycins A (containing six

sugars), landomycin B (containing five sugars), and landomycin

D (containing two sugars) (Figures 1 and 2A), S. cyanogenus

S136 D lanGT1 produced landomycin I and 11-deoxy-landomy-

cin (both containing one sugar in the side chain) (Figures 1

and 2B). Further products were landomycin L and 11-deoxy-

landomycin L (Figure 1). When lanGT1 was expressed in

S. cyanogenus, S136 D lanGT1 wild-type production could be

restored. Most of the products were landomycin A and

landomycin B. In addition, 11-deoxy-landomycin K (Figure 1),
Ltd All rights reserved
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11-deoxy-landomycin B, 11-deoxy-landomycin A, landomycin J

(containing four sugars), landomycin I, and landomycin K were

produced (Figures 1 and 2C). When lndGT1 was expressed in

the mutant landomycin J, 11-deoxy-landomycin J, landomycin

K, and 11-deoxy-landomycin K (Figure 1) were the major prod-

ucts. Additional compounds generated were landomycin D,

11-deoxy-landomycin D, and 11-deoxy-landomycin I (Figures 1

and 2D). Neither landomycin A nor landomycin B were detect-

able. The same result was obtained when lndGT1 was expressed

either on a replicative or on an integrative vector. These data

showed that LndGT1, which shares 74.8% amino acid identity

with LanGT1, does not have the ability to act iteratively (A. Erb,

C.K., A.L., and A.B., unpublished data). In this current work,

studies were conducted to introduce new aglycon specificity

into LndGT1.

RESULTS

S. globisporus Containing lanGT3 Accumulates
a Landomycin Derivative Consisting of Four Sugars
in the Side Chain
After expression of lanGT3 in S. globisporus, landomycin J con-

taining four sugars (D-olivose-D-olivose-L-rhodinose-D-olivose)

was detected as the major product by HPLC-UV and HPLC-MS.

Figure 1. Structures of Various Landomycin Derivatives

LanGT1 is involved in landomycin A biosynthesis by attaching the second and

fifth sugars, and LndGT1 is involved in landomycin E biosynthesis by attaching

the second sugar.
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No landomycin A and no landomycin B could be detected. These

data clearly prove that LndGT1 is not able to catalyze the

attachment of the second sugar, and thus it does not belong to

the iteratively acting GTs like LanGT1.

Sequence Comparison of LanGT1 and LndGT1
and Construction of Chimeric Genes
The landomycin A biosynthetic gene cluster of S. cyanogenus

S136 and the landomycin E biosynthetic gene cluster of

S. globisporus 1912 have been cloned and sequenced.

Sequence comparison of LanGT1 and LndGT1 revealed that

the enzymes share 74.8% identical amino acids. Most of the

differences are located in the N-terminal part between amino

acids 50 and 170. Modeling studies of LanGT1 using UrdGT2

as a template demonstrated that these amino acids are located

in the N-terminal domain including a helices a4a, a4b, and a5

and b sheet b5 (Figure 3).

To determine which region of LanGT1 would govern iterative

functionality, we constructed a set of chimeric GT genes in

which differently sized and positioned elements of one parental

gene had been replaced by the equivalent of the second

parental gene and vice versa. Fragments to be swapped

around were named v1a (aa 1–63), v1b (aa 64–82), v2a (aa

83–105), v2b (aa 106–140), v3 (aa 141–208), and c (aa 209–391)

(Figure 3). As no convenient restriction sites were available,

a megaprimer technology was developed (primers used are

listed in Table 1). Ten chimeric genes were constructed repre-

senting different combinations of regions of lanGT1 and lndGT1

(Figure 4).

Expression of Chimeric Genes in Mutant S. cyanogenus

S136 D lanGT1
S. cyanogenus S136 D lanGT1 was used as an in vivo host to test

the functionality of the expressed chimeric genes. Landomycin

A and B derivatives indicated iterative functionality and landomy-

cins D, J, and K indicated noniterative functionality. The amount

of landomycins without a second D-olivose at the second

position of the side chain (landomycins I and L) indicated non-

functionality, and was a measure for the general ‘‘fitness’’ of

the expressed enzyme (Figures 1 and 4).

Expression of the chimeric gene H1 led to the production of

landomycins A and B, indicating iterative functionality of the

enzyme (Figure 4). Expression of H2 led to the production of

compounds with two, three, and four sugars, but the production

was reduced, indicating H2 to be noniterative functional

with reduced overall activity. These results revealed that the

N-terminal part is important for recognition and binding of the

aglycon. Amino acids responsible for the iterative functionality

of LanGT1 are located in the N-terminal part (aa 1–208). Thus,

both enzymes belong to the GT-B superfamily of GTs. The

successful generation of H1 and H2, which both were made

by domain swapping (generation of GTs containing N- and

C-terminal domains from different sources), encouraged us to

generate further chimeric genes (see above). We focused the

swapping experiments on the N-terminal part of both enzymes.

H4b and H5a showed LanGT1-like activity and H4a and H5b

showed LndGT1-like activity, indicating that regions v1a and

v3 are not important for iterative functionality. Thus, regions

v1b, v2a, and v2b are involved in defining LanGT1-like
6, 28–35, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 29
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properties. Additional swaps were created that focused on

exchanging these regions in the N-terminal part. LanGT1-like

activity was strongly reduced in H3a, H3b, and H6b and was

not detectable in H6a. These data indicated that iterative func-

tionality of LanGT1 is controlled by up to 20 amino acids which

are located at different regions of the protein. We also deduced

from these results interactions of the amino acids located in

regions v1b, v2a, and v2b.

Figure 2. Selected HPLC Chromatograms

(A) S. cyanogenus S136.

(B) S. cyanogenus D lanGT1.

(C) S. cyanogenus D lanGT1 x lanGT1.

(D) S. cyanogenus D lanGT1 x lndGT1.

(E) S. cyanogenus D lanGT1 x lndGT1mut10.

1: landomycin D; 2: landomycin B; 3: landomycin A; 4: landomycin I; 5: 11-deoxy-landomycin I; 6: 11-deoxy-landomycin D; 7: landomycin J; 8: 11-deoxy-land-

omycin J; 9: landomycin K; 10: 11-deoxy-landomycin L; 11: landomycin L; 12: 11-deoxy-landomycin B; 13: 11-deoxy-landomycin K; 14: 11-deoxy-landomycin A.
30 Chemistry & Biology 16, 28–35, January 30, 2009 ª2009 Elsevier Ltd All rights reserved
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Figure 3. Structure-Based Sequence Alignment of LanGT1, LndGT1, and UrdGT2

The secondary structures are from UrdGT2. Regions v1a, v1b, v2a, and v2b are indicated. Amino acids which are present in at least two of the three enzymes are

highlighted. Arrows are pointing to amino acids which have been changed in LndGT1 to introduce iterative functionality (mutant LndGT1-mut10).
Contribution of Various Amino Acids to LanGT1-like
Activity
The contribution of one or more of the 20 different amino acids in

regions v1b, v2a, and v2b to the iterative functionality of LanGT1

was evaluated by carrying out a set of site-directed mutagenesis

studies. Regions were divided into subregions as shown in

Figure5. Toassess the influenceof the amino acids,we introduced

mutations into different chimeric genes/enzymes in such a way

that amino acids originating from LndGT1 were replaced by amino

acids originating fromLanGT1. HybridH3a was usedto investigate

the influence of region v1b, and thus mutants H3aA, H3aB, and

H3aC were generated. H3b and H6b were used for region v2b,

and thus H3bH, H3bI, H3bJ, H6bH, H6bI, and H6bJ were gener-

ated. And hybrid H3bI was used for region v2a, and thus mutants

H3bID, H3bIE, H3bIF, and H3bIG were generated (Figure 5).

H3aA, H3aB, and H3aC showed improved LanGT1 activity in

comparison to H3a, indicating that not one single amino acid in

this region is essential for LanGT1 activity. As after expression

of H3aB, landomycins I and L were produced in significant

amounts, we believe that the B region is also involved in stabi-

lizing the structure of LanGT1.

LanGT1-like activity was comparable using H6b and H6bH,

indicating that amino acids R(107) and G(110) in subregion H

of v2b are not involved in the iterative functionality of LanGT1.

LanGT1 activity was nearly restored in H6bI and H6bJ, indicating

that subregions I and J of v2b are involved in the iterative activity

of LanGT1. The exchange of these regions in mutant H3b could

not restore LanGT1-like activity. H6b and H3b differ in amino

acid composition in v2a and v3. This result might indicate that

in H3bI and H3bJ, essential protein-protein interactions between

v2a and v2b are affected. Interestingly, LanGT1-like activity was

even strongly reduced in H3bJ.
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To gain more information about the influence of region v2a, we

decided to use H3bI as a template for the generation of further

mutants. The results obtained from mutants H3bID, H3bIE,

H3bIF, and H3bIG show that regions D, F, and G are less impor-

tant for iterative functionality than region E. Mutant H3bIE

restored landomycin A and B production in S. cyanogenus

S136 D lanGT1 nearly to that in LanGT1.

In addition, we generated two additional enzymes containing

mutations in the HHGGSGT motif (HHVG and HHCG). This motif

is considered to be important for sugar binding (Mulichak et al.,

2004). Both enzymes were not enzymatically active.

After analysis of all the available information, we determined

ten amino acids which are most essential for the iterative func-

tionality of LanGT1. Three amino acids (V64, L67, G68) were

chosen from region v1b, three (P93, Q94, E97) from v2a, and

four (I119, F121, I122, L124) from v2b (Figure 5). These amino

acids were introduced into LndGT1 at the corresponding posi-

tions, resulting in LndGT1-mut10. Expression of the LndGT1-

mut10 gene in S. cyanogenus DLanGT1 led to the production

of landomycin B and small amounts of landomycin A (Figure 2E).

DISCUSSION

GT engineering has become an important research field in ob-

taining novel GTs with altered substrate specificity. Successful

engineering requires the existence of at least two GTs with

a high number of identical amino acids, the crystal structure of

a GT, or the possibility of using a direct evolution approach.

Examples in engineering GTs of the superfamily GT-B are rare

because just a few GT partners with very similar sequences

are known, just a few crystallographic analyses have been per-

formed (structural information is now available for 17 distinct
, 28–35, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 31
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GT families), and because the availability of a suitable high-

throughput screen to select for the desired activity is often

lacking. In any case, successful examples have been described

in all three areas (Hoffmeister et al., 2002; Williams and Thorson,

2008; Williams et al., 2007, 2008; Bolam et al., 2007; Hancock

et al., 2006).

A very small number of GTs have been shown to act twice

during the biosynthesis of a natural compound. Examples are

Table 1. Primer Used to Generate Chimeric Genes

Construct Primer Sequence

lanGT1 LanNF 50-CGAGGTCGACGGTATCGATAAGCTTC AATTGGCAGGAGACGC-30

LanCR 50-GCGGTCGGTCTAGACGGTCTCAGCGG GCCGCGACC-30

lndGT1 LndNF 50-TGATTACGCCAATTGCGCGCAATTAAC CCTCACTAAAGGGA-30

LndCR 50-TAATACGACTCACTATAGGGCGAATC TAGAGGTACCGGG-30

H1 LanNR 50-GGGCGCGGGGTCCGGTGGTCCTCCCG GAGCCACTCGGGCAGTCG-30

LndCF 50-CGACTGCCCGAGTGGCTCCGGGAGGA CCACCGGACCCCGCGCCC-30

H2 LndNR 50-GTTCCGCGCTCCCGGGCATCACGCCGC AGCCATCGGGGCAGCTG-30

LanCF 50-CAGCTGCCCCGATGGCTGCGGCGTGAT GCCCGGGAGCGCGGAAC-30

H3a LndGT1 RH3a 50-GGGAGCCGACGTTGGAGAGCTGCTCC AGGGCCGGCCGGCCCCA-30

LanGT1 FH3a 50-TGGGGCCGGCCGGCCCTGGAGCAGCT CTCCAACGTCGGCTCCC-30

H3b LanGT1 RH3b 50-GCGTTCCGACGTTGGAGAGCTGGTCC AGGGCCGGCCTGCCCCA-30

LndGT1 FH3b 50-TGGGGCAGGCCGGCCCTGGACCAGCT CTCCAACGTCGGAACGC-30

H4a LndGT1 RH4a 50-CTGGTCCGAGATGGGGTCGACGCCCC AGCGCTGCTGGACGACG-30

LanGT1 FH4a 50-CGTCGTCCAGCAGCGCTGGGGCGTCG ACCCCATCTCGGACCAG-30

H4b LanGT1 RH4b 50-CTGGTCCGAGATGGGGTCGACACCCC AGCGCTGCTGCACCACG-30

LndGT1 FH4b 50-CGTGGTGCAGCAGCGCTGGGGTGTCG ACCCCATCTCGGACCAG-30

H5a LndGT1 RH5a 50-GCTTGCCGCCGAGCCGCTCGACCAGCA TGTCGTCCAGGGTGAGC-30

LanGT1 FH5a 50-GCTCACCCTGGACGACATGCTGGTCGA GCGGCTCGGCGGCAAGC-30

H5b LanGT1 RH5b 50-GCTTGCCCGCCACCCGCTCGATCAGTA TGTCGTCCAGCTTGAGC-30

LndGT1 FH5b 50-GCTCAAGCTGGACGACATACTGATCG AGCGGGTGGCGGGCAAGC-30

H6a LndGT1 RH6a 50-GGTCGGGTCCGAAGTCGCGGGCGAGC GCGAGGTACTCCGGCAGCACG-30

LanGT1 FH6a 50-CGTGCTGCCGGAGTACCTCGCGCTCGC CCGCGACTTCGGACCCGACC-30

H6b LanGT1 RH6b 50-GGTCGGGACGGAAGTCGCCGGCCAGG TCCAGGTACGCGGGCAGTACC-30

LndGT1 FH6b 50-GGTACTGCCCGCGTACCTGGACCTGGC CGGCGACTTCCGTCCCGACC-30

H3bH HIIIbAF 50-CTCGCGCTCGCCCGCGACTTCGGACCC GACCTCG-30

HIIIbAR 50-CGAGGTCGGGTCCGAAGTCGCGGGCG AGCGCGAG-30

H3bI/H4bI HVIbBF 50-CCTGTCGGATCCGATCGAGTTCATCTC GCTGATCGTCGGGGAGAC-30

HVIbBR 50-GTCTCCCCGACGATCAGCGAGATGAAC TCGATCGGATCCGACAGG-30

H3bJ/H4bJ HVIbCF 50-CTTCATCGTCGGGGAGGATCTCGGCGT CCCCGTC-30

HVIbCR 50-GACGGGGACGCCGAGATCCTCCCCGA CGATGAAG-30

H6bH HVIbAF 50-GGACCTGGCCCGCGACTTCGGACCCG ACCTCG-30

HVIbAR 50-CGAGGTCGGGTCCGAAGTCGCGGGCC AGGTCC-30

H3bID v2aAF 50-CTCTCCAACGTCGGATCCCTCTGGATG CGCCCGAC-30

v2aAR 50-GTCGGGCGCATCCAGAGGGATCCGAC GTTGGAGAG-30

H3bIE v2aBF 50-GAACGCTCTGGATGCCCCAGACGCTG GAGGTGCTGCCGGAG-30

v2aBR 50-CTCCGGCAGCACCTCCAGCGTCTGGGG CATCCAGAGCGTTC-30

H3bIF v2aCF 50-GGACGTGCTGCCGGCGTACCTGGACCT CGCCGGCGAC-30

v2aCR 50-GTCGCCGGCGAGGTCCAGGTACGCCG GCAGCACGTCC-30

H3bIG HIIIbGF 50-GCCGGAGTACCTCGACCTCGCCGGCGAC-30

HIIIbGR 50-GTCGCCGGCGAGGTCGAGGTACTCCG GC-30

H3aA HIIIaAF 50-CGACATGCTGGTCGAGCGGCTCGGCG GCAAGCGCC-30

HIIIaAR 50-GGCGCTTGCCGCCGAGCCGCTCGACCAGCATGTCG-30

H3aB HIIIaB 50-GGCAAGCGCCCCTTGCAGTCCTGGGG CCGG-30

H3aC HIIIaCF 50-CGGCCCTGGACCAGCTCTCCAACGTC-30

HIIIaCR 50-GACGTTGGAGAGCTGGTCCAGGGCCG-30
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LanGT1 and LanGT4 from S. cyanogenus S136 and AveBI from

S. avermitilis (Zhang et al., 2006).

As LanGT1 catalyzes key steps during the biosynthesis of the

hexasaccharide antibiotic landomycin A (the attachment of the

second and fifth sugars), we focused our research on this inter-

esting enzyme. LndGT1, a GT from a different strain involved in

landomycin E biosynthesis attaching the second sugar (dTDP-

D-olivose) during the biosynthesis, was shown not to have the

ability to act twice in this study. As the amino acid sequences

of LanGT1 and LndGT1 were rather similar (74.8% identical

amino acids), we decided that hybrids of these enzymes could

be useful to find sequence regions responsible for the difference

in substrate specificity.

An in vivo test system had to be developed due to the lack of

availability of the donor substrate of LanGT1, dTDP-D-olivose.

Thus, all hybrids and mutants had to be tested in vivo in the

lanGT1 deletion mutant, a time- and effort-consuming process.

As GTs seem to have independent structural domains, each

having distinct acceptor and donor substrate binding functions,

we started our work with the generation of chimeric enzymes H1

and H2 consisting of the N- and C-terminal domains of both GTs.

Both are examples of functionally active chimeric enzymes, indi-

cating that possible amino acid contacts in the interface between

the domains in LanGT1 and LndGT1 are conserved. Although the

generation of chimeric enzymes has been described (e.g., Fisch-

bach et al., 2007), this is one of the first reports on domain swap-

ping using GTs involved in antibiotic biosynthesis. Another

example comes from the group of Prof. B.G. Kim, which pub-

lished a chimeric library with N-terminal fragments of KanF

involved in kanamycin biosynthesis and C-terminal fragments

of GtfE involved in vancomycin biosynthesis (Park et al., 2009).

Figure 4. Functionality of Chimeric GTs

S. cyanogenus S136 D lanGT1 was used as in vivo

host to test the functionality of the expressed

chimeric genes. The amount of landomycin A

and B derivatives indicates LanGT1-like activity,

the amount of landomycins D, J, and K indicates

LndGT1-like activity, and the amount of landomy-

cins I and L indicates no activity.

In our study, further swapping experi-

ments isolated a 77 amino acid segment

containing 20 amino acids which are

different between LanGT1 and LndGT1.

This segment was divided into three

regions, v1b, v2a, and v2b.

The X-ray structures of the antibiotic

GTs GtfA (Mulichak et al., 2003), GtfB

(Mulichak et al., 2001), GtfD (Mulichak

et al., 2004), UrdGT2 (Mittler et al.,

2007), OleD (Bolam et al., 2007), OleI

(Bolam et al., 2007), and CalG3 (Zhang

et al., 2008) were recently solved. LanGT1

and LndGT1 were the closest related to

UrdGT2, which is a C-C GT involved in

the biosynthesis of urdamycin A (Dürr

et al., 2004), an angucycline similar to

landomycin A. Because LndGT1 and

LanGT1 share up to 28% identical and 48% similar residues

with UrdGT2, the structure of UrdGT2 allows for structural inter-

pretation of the functional effect of the mutations discovered in

this study.

Region v1b is present in a loop region between helices a3 and

a4a (nomenclature taken from UrdGT2) that is hypervariable in

other GT-B-fold GTs, and it has been stated several times that

this loop constitutes a part of the acceptor-binding site (Ostash

et al., 2004; Mittler et al., 2007). Mutations in b3 and a3 have

been performed in the GTs UrdGT1b and UrdGT1c involved in

urdamycin A biosynthesis, leading to altered substrate speci-

ficity (Hoffmeister et al., 2001, 2002). And recently, Thorson

and coworkers determined P67 in this loop in the oleandomycin

GT OleD as an important amino acid. A triple mutant containing

inter alia P67T showed increased rates of glycoside formation for

different acceptor substrates in comparison to the wild-type

enzyme (Williams et al., 2008).

Region v2a is part of a helices (a4a and a4b in UrdGT2)

which are also variable in other GTs. In contrast to UrdGT2,

LangGT1 and LndGT2 contain a proline residue at position 93

and 94, respectively, that will probably introduce a bend into

helix a4a at this position. This may result in better accessibility

of region v2a, which would explain its impact on substrate

specificity. Interestingly, exchange of amino acids in this

region, as performed in H3bIE, resulted in improved LanGT1-

like activity.

Region v2b consists of a b sheet (b4) and the a helix a5 with

some variability between different GTs. It is located at the

bottom of the active site of GTs. Mutations at this position

may directly change the substrate-enzyme interaction and/or

distort the geometry of the active site, which could explain
Chemistry & Biology 16, 28–35, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 33
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why H6bI and H6bJ showed improved LanGT1 activity in

comparison to H6b.

We observed variability in the overall production amounts

by around 30% when comparing three different clones

harboring the same chimeric gene. But the overall production

of landomycin derivatives was not dependent on the kind of

chimeric GT expressed in the mutant. This indicates that

LanGT1 and LndGT1 are not limiting factors of landomycin

biosynthesis.

LanGT1 is an iteratively working enzyme that does not act like

other enzymes which perform one kind of reaction several times.

Examples are cellobiohydrolases and peptidoglycan GTs. These

enzymes contain one active site inside a tunnel where the

product/substrate is being processed to reach the active center

several times. In contrast, LanGT1 has to release the product

after the first glycosylation step. It is worthwhile to mention

that LanGT1 is a highly specific enzyme, only recognizing land-

omycin I and landomycin J as substrate but no other landomycin

with two, three, five, or six sugars. Thus, the mechanism of

recognition of LanGT1 is very unusual.

Figures 5. Functionality of Mutated Chimeric GTs

GTs which were used as hosts for further mutations are shown as arrows.

Mutations which were introduced are given below each GT (see Figure 4 for

further information).
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SIGNIFICANCE

GTs are a very important class of enzyme involved in many

processes in living cells. Understanding the basis for

substrate specificity of these enzymes is very important.

This article focuses on two related GTs which differ in

substrate specificity. One is capable of iterative glycosyla-

tion, the other is not. Amino acids were identified that specif-

ically contribute to iterative action. To our knowledge, this is

the first systematic study of GT iterative action, an activity

unique to a few, but important, GTs involved in natural

product biosynthesis. This work will guide the design of

GTs with engineered substrate specificity, an important

issue for the development of novel glycosylated natural

products.

EXPERIMENTAL PROCEDURES

General

S. cyanogenus S136 was obtained from the DSMZ (Deutsche Sammlung von

Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; DSM

5087); S. globisporus 1912 was a kind gift from Prof. Dr. V. Fedorenko (Lviv,

Ukraine). Escherichia coli XL1-Blue MRF was purchased from Stratagene,

E. coli ET12567 (pUZ8002) was obtained from Prof. C. Smith (Manchester,

UK), pKC1132 was obtained from Eli Lilly, and pUC19 was purchased from

New England Biolabs. pMunII was constructed as described earlier (Trefzer

et al., 2001). pKC1218E (containing the erythromycin promoter) was kindly

provided by Prof. Dr. J. Salas, Universidad de Oviedo (Oviedo, Spain).

pSETermE was obtained from Combinature Biopharm (Berlin, Germany). All

chemicals were reagent grade and purchased from Promega, New England

Biolabs, Roth, or Sigma-Aldrich. Primers were ordered from Eurofins MWG

Operon (Ebersberg, Germany). E. coli was grown in LB medium as described

(Sambrook and Russell, 2001). S. cyanogenus was grown in TSB medium (3%

tryptic soy broth) and in SG medium (1% soybean meal, 2% glucose, 0.2%

CaCO3, 0.234% valine) for production. Apramycin, kanamycin, and carbenicil-

lin were used in concentrations of 50 mg/ml; phosphomycin was used at

a concentration of 100 mg/ml. Isolation of plasmid DNA from E. coli and restric-

tion, purification, ligation, and site-directed mutagenesis were performed

according to the protocols of the manufacturers of the kits and enzymes

(Promega, QIAGEN, Macherey-Nagel, and Stratagene).

Chemical Analysis

Landomycins were extracted from liquid cultures with ethyl acetate. TLC was

performed on silica gel plates (silica gel 60 F254; Merck) with methylene chlor-

ide:methanol (9:1, v/v) as solvent. LC-electrospray ionization (ESI)-MS analysis

was performed on an Agilent 1100 series system equipped with a quadrupole

detector. The column used on the LC-MS system was a Zorbax Eclipse XDB-

C8 main column (150 3 4.6 mm; 5 mm particles). The UV detection wavelength

was 254 nm. ESI mass spectrometry was carried out using chamber settings

as follows: drying gas flow, 12 ml/min; drying gas temperature, 350�C; nebu-

lizer pressure, 50 psig; capillary voltage, 3000 V. Samples were dissolved in

acetonitrile:H2O (1:1, v/v), and analyzed at a flow rate of 0.7 ml/min with the

following step gradient: 0–9 min 30% B, 9–16 min 35% B, 16–19 min 60%

B, 19–23.10 min 85% B, 23.10–26 min 95% B (solvent A: 99.5% water,

0.5% acetic acid; solvent B: acetonitrile). Analysis was carried out in nega-

tive-ionization mode with a mass range set to 300–1150 Da.

Construction of Expression Plasmids for lanGT1,

lndGT1, and lanGT3

For expression, a PCR fragment containing lanGT1 was ligated into pSET

behind the ermE promoter. The plasmid was transferred to S. cyanogenus D

lanGT1 by conjugation. Landomycin production was assayed as described

above.

Copies of lndGT1 were synthesized as PCR fragments containing the ribo-

some-binding site and MfeI and XbaI sites or two XbaI sites, respectively, and
Ltd All rights reserved
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cloned into the MfeI and XbaI sites of pSET or into the XbaI sites of pKC1218, in

both cases behind the ermE promoter.

Plasmid pKC1218lanGT3 was constructed as described (Hoffmeister et al.,

2002).

Preparation of Chimeric Genes

For the construction of the chimeric genes, DNA fragments were synthesized

by PCR amplification. Reaction conditions in general involved 25 cycles of

denaturing at 94�C for 1 min (first cycle for 6 min), annealing at 60�C for

1 min, and extending at 72�C for 2 min using the Pfu polymerase. Primers

used for each construct are listed in Table 1. These fragments, containing

approximately 40 bp of overlapping DNA, were used as megaprimers in the

next PCR reactions to create the hybrids. Reaction conditions were used as

described, except for extending for 4 min. These hybrids were used as

templates for an additional round of PCR with primers covering the 50and 30

ends of either lanGT1 or lndGT1. Conditions were identical to those for the

creation of hybrids. An MfeI site and an XbaI site were introduced upstream

and downstream of the chimeric genes. PCR products were restricted by

MfeI and XbaI and ligated into pMunII. Genes were sequenced and cloned

into pSET152 behind the ermE promoter. Mutations were introduced using

the QuikChange site-directed mutagenesis kit from Stratagene (for primers,

see Table 1).
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